
coffea-casa
Release 2023.11.16+39.g015f705

coffea-casa, UNL

Dec 02, 2023

GETTING STARTED

1 First Steps at Coffea-Casa @ UNL 3

2 Installing Custom Packages on Coffea-Casa 21

3 Performance Metrics on Coffea-Casa 23

4 Interfacing With HTCondor Workers 27

5 Troubleshooting Common Issues 29

6 Coffea-Casa Setup Without Dask Labextention 31

7 How to Configure Dask Labextension Cluster 33

8 Deployment of Coffea-casa Analysis Facility at your Tier 2/Tier 3 grid site or Cluster 35

9 coffea_casa module API 37

10 Community Support and Help 39

Index 41

i

ii

coffea-casa, Release 2023.11.16+39.g015f705

Coffea-casa is a prototype of an analysis facility that provides services for “low latency columnar analysis,” enabling
rapid processing of data in a column-wise fashion.

Coffea-casa Analysis Facility (AF) services, based on Dask and Jupyter Notebook technologies, aim to dramatically
lower time for analysis and provide an easily-scalable and user-friendly computational environment that will simplify,
facilitate, and accelerate the delivery of HEP results.

The facility is built on top of a Kubernetes cluster and integrates with dedicated resources, with resources allocated via
fair share through the local HTCondor system and Nebraska Tier-2.

Note: Coffea-casa is a prototype and is currently in active development: if you had noticed a bug or would like to leave

GETTING STARTED 1

coffea-casa, Release 2023.11.16+39.g015f705

us feedback, we invite you to open an issue directly on GitHub: <https://github.com/CoffeaTeam/coffea-casa/issues>

2 GETTING STARTED

https://github.com/CoffeaTeam/coffea-casa/issues

CHAPTER

ONE

FIRST STEPS AT COFFEA-CASA @ UNL

1.1 Prerequisites

The primary mode of analysis with coffea-casa is coffea. Coffea provides plenty of examples to users in its documen-
tation. Further resources, meant to run specifically on coffea-casa, can be found in the sidebar under the “Gallery of
Coffea-casa Examples” section or the appropriate repository here.

Knowledge of Python is assumed. The standard environment for coffea analyses is within Jupyter Notebooks, which
allow for dynamic, block-by-block execution of code. Coffea-casa employs the JupyterLab interface. JupyterLab is
designed for hosting Jupyter Notebooks on the web and permits the usage of additional features within its environment,
including Git access, compatibility with cluster computing tools, and much, much more.

If you aren’t familiar with any of these tools, please click on the links above and get acquainted with how they work
before delving into coffea-casa.

1.2 Access

Important: For CMS or opendata files, please see the relevant sections for coffea-casa at T2 Nebraska. For ATLAS
files, see coffea-casa at UChicago.

There are two access points to the Coffea-casa AF @ T2 Nebraska. The site at https://coffea-opendata.casa is for
Opendata and can be accessed through any CILogon identity provider, though it will not be able to process any files
that require authentication.

Important: Remember that to access this instance you need to register: click “Register for access”. (We have
limited resources available and can’t provide access to everyone under CILogon).

3

https://coffeateam.github.io/coffea/index.html
https://coffeateam.github.io/coffea/examples.html
https://coffeateam.github.io/coffea/examples.html
https://github.com/CoffeaTeam/coffea-casa-tutorials
https://docs.python.org/3/tutorial/
https://jupyter.org/
https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://coffea-opendata.casa

coffea-casa, Release 2023.11.16+39.g015f705

The other at https://coffea.casa is for CMS data and can be accessed through the CMS AuthZ instance; this site is
capable of handling all CMS files and uses tokens for authentication.

Another coffea-casa instance exists for the AF @ UChicago, which is meant to be used with ATLAS data. You can
accesss it at `https://coffea.af.uchicago.edu`_.

See the appropriate section below if you need help going through the registration process for either access point.

1.2.1 Opendata CILogon Authentication Instance

Important: This section applies only to the Opendata Coffea-Casa instance.

Currently Opendata Coffea-Casa supports any CILogon identity provider. Select your identity provider:

For accessing Opendata Coffea-Casa, we are offering a self-signup registration form with approval.

4 Chapter 1. First Steps at Coffea-Casa @ UNL

https://coffea.casa

coffea-casa, Release 2023.11.16+39.g015f705

Click to proceed to the next stage:

Click to proceed to the next stage:

If you see the next window, it means that the registration request was sent succesfully!

Important: After this step please wait until you get approved by an administrator!

After your request is approved, you will receive an email, where you will simply need to click a link:

1.2. Access 5

coffea-casa, Release 2023.11.16+39.g015f705

Voila! Now you can login to Opendata Coffea-Casa. Click on “Authorized Users Only: Sign in with OAuth 2.0” to do
so:

1.2.2 CMS AuthZ Authentication Instance

Important: This section applies only to the CMS Coffea-Casa instance.

Currently Coffea-Casa Analysis Facility @ T2 Nebraska supports any member of CMS VO organisation.

To access it please sign in or sign up using Apply for an account.

6 Chapter 1. First Steps at Coffea-Casa @ UNL

coffea-casa, Release 2023.11.16+39.g015f705

1.2. Access 7

coffea-casa, Release 2023.11.16+39.g015f705

1.2.3 ATLAS AuthZ Authentication Instance

Currently Coffea-Casa Analysis Facility @ UChicago can support any member of ATLAS.

Sign in with your ATLAS CERN credential:

1.3 Docker Image Selection

The default image is preloaded with coffea, Dask, and HTCondor and you should select it:

This will forward you to your own personal Jupyterhub instance running at Analysis Facility @ T2 Nebraska:

8 Chapter 1. First Steps at Coffea-Casa @ UNL

coffea-casa, Release 2023.11.16+39.g015f705

1.4 Cluster Resources in Coffea-Casa Analysis Facility @ T2 Ne-
braska

By default, the Coffea-casa Dask cluster should provide you with a scheduler and workers, which you can see by clicking
on the colored Dask icon in the left sidebar.

As soon as you start your computations, you will notice that available resources at the Opendata Coffea-Casa Analysis
Facility @ T2 Nebraska autoscale depending on the resources available in the HTCondor pool at Nebraska Tier 2.

1.4. Cluster Resources in Coffea-Casa Analysis Facility @ T2 Nebraska 9

coffea-casa, Release 2023.11.16+39.g015f705

1.5 Opening a New Console or File

There are three ways by which you can open a new tab within coffea-casa. Two are located within the File menu at the
very top of the JupyterLab interface: New and New Launcher.

The New dropdown menu allows you to open the console or a file of a specified format directly. The New Launcher
option creates a new tab with buttons that permit you to launch a console or a new file, exactly like the interface you
are shown when you first open coffea-casa.

The final way is specific to the File Browser tab of the sidebar.

This behaves exactly like the New Launcher option above.

Note: Regardless of the method you use to open a new file, the file will be saved to the current directory of your File
Browser.

10 Chapter 1. First Steps at Coffea-Casa @ UNL

coffea-casa, Release 2023.11.16+39.g015f705

1.6 Using Git

Cloning a repository in the Coffea-casa Analysis Facility @ T2 Nebraska is simple, though it can be a little confusing
because it is spread across two tabs in the sidebar: the File Browser and the Git tabs.

In order to clone a repository, first go to the Git tab. It should look like this:

Simply click the appropriate button (initialize a repository, or clone a repository) and you’ll be hooked up to GitHub.
This should then take you to the File Browser tab, which is where you can see all of the repositories you have cloned
in your JupyterLab instance. The File Browser should look like this:

If you wish to change repositories, simply click the folder button to enter the root directory. If you are in the root
directory, the Git tab will reset and allow you to clone another repository.

If you wish to commit, push, or pull from the repository you currently have active in the File Browser, then you can

1.6. Using Git 11

coffea-casa, Release 2023.11.16+39.g015f705

return to the Git tab. It should change to look like this, so long as you have a repository open in the File Browser:

The buttons in the top right allow for pulling and pushing respectively. When you have edited files in a directory, they
will show up under the Changed category, at which point you can hit the + to add them to a commit (at which point
they will show up under Staged). Filling out the box at the bottom of the sidebar will file your commit, and prepare it
for you to push.

12 Chapter 1. First Steps at Coffea-Casa @ UNL

coffea-casa, Release 2023.11.16+39.g015f705

1.7 Using XCache

Important: This section applies only to the CMS Coffea-Casa instance.

When we use CMS data, we generally require certificates or we will be faced with authentication errors. Coffea-casa
handles the issue of certificates internally through xcache tokens so that its users do not explicitly have to import their
certificates, though this dynamic requires adjustiment of the redirector portion of the path to the root file requested.

Let’s say we wish to request the file:

root://cmsxrootd.fnal.gov//store/data/Run2018A/DoubleMuon/NANOAOD/02Apr2020-v1/30000/
→˓0555868D-6B32-D249-9ED1-6B9A6AABDAF7.root

Then we would replace the cmsxrootd.fnal.gov redirector with the xcache redirector:

root://xcache//store/data/Run2018A/DoubleMuon/NANOAOD/02Apr2020-v1/30000/0555868D-6B32-
→˓D249-9ED1-6B9A6AABDAF7.root

Now, we will be able to access our data.

In addition to handling authentication, XCache will cache files so that they are able to be pulled more quickly in
subsequent runs of the analysis. It should be expected, then, that the first analysis run with a new coffea-casa file will
run slower than ones which follow afterwards.

1.8 ServiceX

Important: This section applies only to the ATLAS Coffea-Casa instance.

Important: This section applies only to the ATLAS Coffea-Casa instance at UChicago. The instances at T2 Nebraska
are capable of handling ServiceX requests through uproot, but the feature is still at an experimental stage. Ask an
administrator for more information on accessing ServiceX on the T2 Nebraska instances.

When dealing with very large datasets it is often better to do initial data filtering and augmentation using ServiceX.
ServiceX transformations produce their output as an Awkward Array. The array can then be used in a regular Coffea
processor. Here is a schema explaining the workflow:

1.7. Using XCache 13

https://iris-hep.org/projects/servicex

coffea-casa, Release 2023.11.16+39.g015f705

There are two different UC AF-deployed ServiceX instances. The only difference between them is the type of input
data they are capable of processing. Uproot processes any kind of “flat” ROOT files, while xAOD processes only Rucio
registered xAOD files.

To use them one has to register and get approved. Sign in will lead you to a Globus registration page where you may
choose to use an account connected to your institution:

Once approved, you will be able to see the status of your requests in the dashboard:

For your code to be able to authenticate your requests you need to download a servicex.yaml file, which should be
placed in your working directory. The file is downloaded from your profile page:

For an example analysis using ServiceX and Coffea look here.

14 Chapter 1. First Steps at Coffea-Casa @ UNL

https://uproot-atlas.servicex.af.uchicago.edu/
https://xaod.servicex.af.uchicago.edu/
https://github.com/iris-hep/analysis-grand-challenge/blob/main/workshops/agctools2021/HZZ_analysis_pipeline/HZZ_analysis_pipeline.ipynb

coffea-casa, Release 2023.11.16+39.g015f705

1.9 Opendata Example

In this example (which corresponds to ADL Benchmark 1), we’ll try to run a simple analysis example on the Coffea-
Casa Analysis Facility. We will use the coffea_casa wrapper library, which allows use of pre-configured settings for
HTCondor configuration and Dask scheduler/worker images.

Our goal in this toy analysis is to plot the missing transverse energy (MET) of all events from a sample dataset;
this data was converted from 2012 CMS Open Data (17 GB, 54 million events), and is available in public EOS
(root://eospublic.cern.ch//eos/root-eos/benchmark/Run2012B_SingleMu.root).

First, we need to import the coffea libraries used in this example:

import numpy as np
%matplotlib inline
from coffea import hist
import coffea.processor as processor
import awkward as ak
from coffea.nanoevents import schemas

To select the aforementioned data in a coffea-friendly syntax, we employ a dictionary of datasets, where each dataset
(key) corresponds to a list of files (values):

fileset = {'SingleMu' : ["root://eospublic.cern.ch//eos/root-eos/benchmark/Run2012B_
→˓SingleMu.root"]}

Coffea provides the coffea.processor module, where users may write their analysis code without worrying about the
details of efficient parallelization, assuming that the parallelization is a trivial map-reduce operation (e.g., filling his-
tograms and adding them together).

This program plots an event-level variable (in this case, MET, but switching it is as␣
→˓easy as a dict-key change). It also demonstrates an easy use of the book-keeping␣
→˓cutflow tool, to keep track of the number of events processed.

The processor class bundles our data analysis together while giving us some helpful␣
→˓tools. It also leaves looping and chunks to the framework instead of us.
class Processor(processor.ProcessorABC):

def __init__(self):
Bins and categories for the histogram are defined here. For format, see https:/

→˓/coffeateam.github.io/coffea/stubs/coffea.hist.hist_tools.Hist.html && https://
→˓coffeateam.github.io/coffea/stubs/coffea.hist.hist_tools.Bin.html

dataset_axis = hist.Cat("dataset", "")
MET_axis = hist.Bin("MET", "MET [GeV]", 50, 0, 100)

The accumulator keeps our data chunks together for histogramming. It also␣
→˓gives us cutflow, which can be used to keep track of data.

self._accumulator = processor.dict_accumulator({
'MET': hist.Hist("Counts", dataset_axis, MET_axis),
'cutflow': processor.defaultdict_accumulator(int)

})

@property
def accumulator(self):

return self._accumulator

(continues on next page)

1.9. Opendata Example 15

https://github.com/CoffeaTeam/coffea-casa-tutorials/blob/master/examples/example1.ipynb

coffea-casa, Release 2023.11.16+39.g015f705

(continued from previous page)

def process(self, events):
output = self.accumulator.identity()

This is where we do our actual analysis. The dataset has columns similar to␣
→˓the TTree's; events.columns can tell you them, or events.[object].columns for deeper␣
→˓depth.

dataset = events.metadata["dataset"]
MET = events.MET.pt

We can define a new key for cutflow (in this case 'all events'). Then we can␣
→˓put values into it. We need += because it's per-chunk (demonstrated below)

output['cutflow']['all events'] += ak.size(MET)
output['cutflow']['number of chunks'] += 1

This fills our histogram once our data is collected. The hist key ('MET=') will␣
→˓be defined in the bin in __init__.

output['MET'].fill(dataset=dataset, MET=MET)
return output

def postprocess(self, accumulator):
return accumulator

With our data in our fileset variable and our processor ready to go, we simply need to connect to the Dask Labextention-
powered cluster available within the Coffea-Casa Analysis Facility @ T2 Nebraska. This can be done by dragging the
scheduler into the notebook, or by manually typing the following:

from dask.distributed import Client
client = Client("tls://localhost:8786")

Then we bundle everything up to run our job, making use of the Dask executor. We must point it to our client as defined
above. In the Runner, we specify that we want to make use of the NanoAODSchema (as our input file is a NanoAOD).

executor = processor.DaskExecutor(client=client)
run = processor.Runner(executor=executor,

schema=schemas.NanoAODSchema,
savemetrics=True

)

output, metrics = run(fileset, "Events", processor_instance=Processor())

The final step is to generates a 1D histogram from the data output to the ‘MET’ key. fill_opts are optional arguments
to fill the graph (default is a line).

hist.plot1d(output['MET'], overlay='dataset', fill_opts={'edgecolor': (0,0,0,0.3), 'alpha
→˓': 0.8})

As a result you should see the following plot:

16 Chapter 1. First Steps at Coffea-Casa @ UNL

coffea-casa, Release 2023.11.16+39.g015f705

1.10 CMS Example

Important: This section applies only to the CMS Coffea-Casa instance.

Now we will try to run a short example, using CMS data, which corresponds to plotting the dimuon Z-peak.
We use dimuon data which consists of ~3 million events at ~2.7 GB which belongs to the /DoubleMuon/
Run2018A-02Apr2020-v1/NANOAOD dataset.

We import some common coffea libraries used in this example:

import numpy as np
from coffea import hist
from coffea.analysis_objects import JaggedCandidateArray
import coffea.processor as processor
%matplotlib inline

To select the aforementioned data in a coffea-friendly syntax, we employ a dictionary of datasets, where each dataset
(key) corresponds to a list of files (values):

fileset = {'DoubleMu' : ['root://xcache//store/data/Run2018A/DoubleMuon/NANOAOD/
→˓02Apr2020-v1/30000/0555868D-6B32-D249-9ED1-6B9A6AABDAF7.root',

'root://xcache//store/data/Run2018A/DoubleMuon/NANOAOD/02Apr2020-
→˓v1/30000/07796DC0-9F65-F940-AAD1-FE82262B4B03.root',

'root://xcache//store/data/Run2018A/DoubleMuon/NANOAOD/02Apr2020-
→˓v1/30000/09BED5A5-E6CC-AC4E-9344-B60B3A186CFA.root']}

Coffea provides the coffea.processor module, where users may write their analysis code without worrying about the
details of efficient parallelization, assuming that the parallelization is a trivial map-reduce operation (e.g., filling his-
tograms and adding them together).

class Processor(processor.ProcessorABC):
def __init__(self):

dataset_axis = hist.Cat("dataset", "Dataset")
dimu_mass_axis = hist.Bin("dimu_mass", "$\mu\mu$ Mass [GeV]", 50, 20, 120)

self._accumulator = processor.dict_accumulator({
'dimu_mass': hist.Hist("Counts", dataset_axis, dimu_mass_axis),

})
(continues on next page)

1.10. CMS Example 17

https://github.com/CoffeaTeam/coffea-casa-tutorials/blob/master/examples/zpeak_example.ipynb

coffea-casa, Release 2023.11.16+39.g015f705

(continued from previous page)

@property
def accumulator(self):

return self._accumulator

def process(self, events):
output = self.accumulator.identity()

dataset = events.metadata["dataset"]

mu = events.Muon
Select events with 2 muons whose charges cancel out (Zs are charge-neutral).
dimu_neutral = mu[(ak.num(mu) == 2) & (ak.sum(mu.charge, axis=1) == 0)]
Add together muon pair p4's, find dimuon mass.
dimu_mass = (dimu_neutral[:, 0] + dimu_neutral[:, 1]).mass
Plot dimuon mass.
output['dimu_mass'].fill(dataset=dataset, dimu_mass=dimu_mass)
return output

def postprocess(self, accumulator):
return accumulator

With our data in our fileset variable and our processor ready to go, we simply need to connect to the Dask Labextention-
powered cluster available within the Coffea-Casa Analysis Facility @ T2 Nebraska. This can be done by dragging the
scheduler into the notebook, or by manually typing the following:

from dask.distributed import Client
client = Client("tls://localhost:8786")

Then we bundle everything up to run our job, making use of the Dask executor. To do this, we must point to a client
within executor_args.

executor = processor.DaskExecutor(client=client)
run = processor.Runner(executor=executor,

schema=schemas.NanoAODSchema,
)

output = run(fileset, "Events", processor_instance=Processor())

The final step is to generates a 1D histogram from the data output to the ‘MET’ key. fill_opts are optional arguments
to fill the graph (default is a line).

hist.plot1d(output['dimu_mass'], overlay='dataset', fill_opts={'edgecolor': (0,0,0,0.3),
→˓'alpha': 0.8})

As a result you should see the following plot:

18 Chapter 1. First Steps at Coffea-Casa @ UNL

coffea-casa, Release 2023.11.16+39.g015f705

1.11 ATLAS Examples

Important: This section applies only to the ATLAS Coffea-Casa instance.

The notebooks about columnar data analysis with DAOD_PHYSLITE `here<https://github.com/nikoladze/agc-tools-
workshop-2021-physlite>`_ may be useful as a reference.

1.11. ATLAS Examples 19

coffea-casa, Release 2023.11.16+39.g015f705

20 Chapter 1. First Steps at Coffea-Casa @ UNL

CHAPTER

TWO

INSTALLING CUSTOM PACKAGES ON COFFEA-CASA

Coffea-casa provides support for users to install their own packages through pip. In cases where your notebook does not
send jobs to workers, you can simply install your packages to the scheduler through the terminal. If you wish for your
workers to make use of custom packages, however, you’ll need to go through some extra steps to ensure your packages
are installed on all workers. Installation to the scheduler is recommended in either case.

2.1 Installations on the Scheduler

Let’s run through an example: we want to install pytest to our scheduler, and we don’t need it to be distributed across our
workers. In that case, we can open up a new terminal in coffea-casa by going to the File tab and starting a new launcher.
A cursory pip freeze demonstrates that pytest is not installed by default, and so we have to add it ourselves. We can
do this through pip install pytest, which will tell us that the package is being installed into /opt/conda/lib/
python3.8/site-packages. A follow-up pip freeze indicates that pytest is now in our list of packages:

More complicated pip installations are also available. Refer to the pip install docs for more information.

2.2 Installations on the Workers

If you install a package to your scheduler but attempt to run it on your workers, you will quickly run into
ModuleNotFound errors. This is because your workers don’t have the package! Luckily, a remedy to this problem
is fairly simple. Again, let’s assume that we wish to install pytest and that this time we wish to use it during processing
on our workers. We first get it onto our scheduler (as above), and then we tell our workers to install it:

from dask.distributed import Client, PipInstall

dependencies = [
"pytest",

]
client = Client("tls://localhost:8786")
client.register_worker_plugin(PipInstall(packages=dependencies))

To use this code for your own purposes, you merely have to put in your dependencies in the dependencies list. This
should support all installation formats that pip does, and you can add multiple packages by expanding the list. For
example, to install a second package from a GitHub repository, you could specify:

21

https://pip.pypa.io/en/stable/cli/pip_install/

coffea-casa, Release 2023.11.16+39.g015f705

dependencies = [
"pytest",
"topcoffea@git+https://github.com/TopEFT/topcoffea.git",

]

and your workers should have both pytest and topcoffea installed onto them.

2.3 Sending Files to Workers (Without Pip)

If you have a file that you wish to import without pip, and you need to send it to your workers, then you can do so by
initializing your client and providing it the following line:

client.upload_file('foo.py')

Where foo.py is replaced by the file you are attempting to import.

22 Chapter 2. Installing Custom Packages on Coffea-Casa

CHAPTER

THREE

PERFORMANCE METRICS ON COFFEA-CASA

3.1 Available Features

At some point you will probably want to measure the performance of your analysis on coffea-casa. Luckily, both Dask
and coffea come equipped with the capabilities to give you more information about different aspects of your analysis
run. These include, broadly:

• run_uproot_job has a savemetrics arg which can provide basic info such as the number of entries and the
process time

• the Dask dashboard includes a variety of info, and can be used interactively while your analysis is running

• the Dask performance report is a snapshot of the Dask dashboard that can be saved for later review

3.2 Coffea Metrics

The simplest metrics that can be obtained stem from coffea. They include the number of bytes read, the names of all
columns, the number of entries, the processing time (summed across all cores), and the number of chunks. These can
be accessed by adding the savemetrics: True argument to your Runner function. For example:

run = processor.Runner(executor=executor,
schema=schemas.NanoAODSchema,
savemetrics=True)

output, metrics = run(fileset, "Events", processor_instance=Processor())

It should be noted that the introduction of this argument changes the format of your output by converting it into a tuple.
Within this tuple, output[0] will contain everything that output did without savemetrics on, while output[1]
will contain the metrics. You can retrieve the “standard” behavior by taking the output of run() as two variables, as
we did above, because Python is capable of parsing tuple outputs into multiple variables.

23

coffea-casa, Release 2023.11.16+39.g015f705

3.3 Dask Interactive Dashboard

The Dask interactive dashboard can be accessed in the same side-pane where your cluster information is displayed. The
buttons at the top should be orange when your analysis is running, though they may be grey if the scheduler is inactive
or has been shutdown.

Among the tabs, you’re most likely to find useful information under workers and task stream. The workers tab gives
you information about which workers are running and how many resources each is using:

The task stream tab gives you information about what each thread is currently working on. This can give insight into,

24 Chapter 3. Performance Metrics on Coffea-Casa

coffea-casa, Release 2023.11.16+39.g015f705

for example, preprocessing versus processing times, the length of an average processing thread, and a visual depiction
of anomalies in thread run-time. The graph can look a little intimidating because we typically have a lot of threads:

Put simply, however, the green parts of the task stream represent the preprocessing step and the yellow parts represent
processing. The “verticality” represents the number of threads currently running. Because autoscaling is on, this
number varies, with some shutting down (the yellow lines that end short) and some starting up (the new lines stacked
at the top).

3.4 Dask Performance Report

The Dask performance report is much like the dashboard, though it provides a static snapshot which is generated after
a run completes. This snapshot is in the form of an HTML file, which looks something like this when rendered:

3.4. Dask Performance Report 25

coffea-casa, Release 2023.11.16+39.g015f705

It should be noted that the information presented here is somewhat more limited. We don’t have access to the nice
worker tab, but we do still have access to the task stream. In order to generate a performance report for your analysis,
you have to wrap your run_uproot_job in such a way:

from dask.distributed import performance_report
with performance_report(filename="dask-report.html"):

output = run(fileset, "Events", processor_instance=Processor())

The file will be saved in the working directory, unless you specify a direct path along with the file name.

3.5 Suggestions for Improving Performance

With a better understanding of our performance, it’s natural to wonder how it could be improved. While autoscaling
should pinpoint the ideal number of workers for an analysis run, it could be imperfect, and testing scaling with a
manually set amount of workers could be nice check. If disparities between the autoscaling amount and the true ideal
amount exist, they should be reported as an issue so that the coffea-casa team try to better optimize the system.

Another factor which can dramatically impact performance is the chunksize in run_uproot_job. In general, it
appears that a lower chunksize results in quicker runtimes, but there is a lower bound beyond which performance
begins to drop. Optimizing chunksize should be a first stop for addressing performance issues if autoscaling is
satisfactory.

Lastly, if you are appealing to regular Python operations within your processor (i.e., not Awkward or NumPy), try to
wrap them with Numba.

26 Chapter 3. Performance Metrics on Coffea-Casa

https://numba.pydata.org/

CHAPTER

FOUR

INTERFACING WITH HTCONDOR WORKERS

4.1 Locating Workers

Dask deploys workers through HTCondor. Information about these workers can be located through the termi-
nal using the condor_q command. This will display information about all workers which have run on coffea-
casa, but you can typically find your workers by approximating their starting time and date. For a more reliable
method, you can run the command condor_q -af:h Owner JobStartDate JobId DaskSchedulerAddress
| grep -E "(username|Owner)" where username is replaced by your coffea-casa username. This user-
name is identical to the name in your terminal command line which follows cms-jovyan@jupyter (e.g.
cms-jovyan@jupyter-matousadamec-40gmail-2ecom:~$ has username matousadamec-40gmail-2ecom).

4.2 Accessing Workers

Each of the workers listed after condor_q is executed has an ID associated with it. This can be found either under
the BATCH_NAME or JOBS_ID columns, both of which should be identical (up to the decimal). To connect to a specific
worker, you can use the condor_ssh_to_job ID command, replacing ID with your worker’s ID. Upon a successful
connection, your terminal should indicate the worker you have connected to. An example of what this looks like is
provided below:

From here, you can execute terminal commands as usual, but you are now “within” the worker. Of particular interest
here will be the log files _condor_stderr and _condor_stdout, which will tell you any errors or print statements
executed during the worker’s runtime. You should also be able to see an xcache_token if you are wanting to use CMS
data (as you should be running on an instance where xcache is enabled).

27

coffea-casa, Release 2023.11.16+39.g015f705

4.3 Killing Workers

To kill a job, go to the scheduler terminal. Find the ID of the job you are seeking to kill through condor_q, and then
use condom_rm ID (replacing ID with your job’s ID). This may be useful if your job becomes stuck during processing.

28 Chapter 4. Interfacing With HTCondor Workers

CHAPTER

FIVE

TROUBLESHOOTING COMMON ISSUES

In general, it is advised that you restart your coffea-casa server before doing further troubleshooting, so that you can
ensure your instance is up-to-date. You can do this by going into the File menu, accessing the Hub Control Panel, and
pressing the big red “Stop My Server” button.

After the server is shut down, you will get a series of linear prompts to start it back up again. If the problem persists,
then it’s time for a deeper investigation!

5.1 Accessibility Issues

The coffea-casa server won’t load, I get an error when trying to access the page, or I’m told there are certificate
issues.
There’s a plethora of issues which seem specific to certain web browsers. If you run into any of these, please attempt
to open coffea-casa in a different browser. Should this still fail, open a new issue.

If opening coffea-casa in a new browser solves the issue, you are still encouraged to provide information within this
issue to help us gather data.

Running a manually-configured Dask cluster gives me a dashboard link, but the dashboard link does not work.
This is expected behavior. If you go into the Dask sidebar of JupyterLab, however, the orange keys should still work
and give you access to the information you’d find within the dashboard. If the keys are grey or any other problems arise,
please submit an issue.

5.2 Runtime Issues

The terminal appears to terminate without an error, or I have noticed strange “core.####” files within my file
browser.
If your terminal is terminating without errors, please check for the aforementioned core files within your file browser.
If they are present, then you are generating core dumps. In either case, report an issue on GitHub specifying what you
are trying to do, which step is going wrong, and whether you are getting core dumps. This will help us pinpoint what’s
going wrong.

29

https://github.com/CoffeaTeam/coffea-casa/issues/93/
https://github.com/CoffeaTeam/coffea-casa/issues/93/

coffea-casa, Release 2023.11.16+39.g015f705

I have installed a package through the terminal, but I still get ModuleNotFound errors when attempting to run
my processor.
Ensure that you have installed your package onto the workers as well. A guide for this can be found here in our
documentation.

30 Chapter 5. Troubleshooting Common Issues

https://coffea-casa.readthedocs.io/en/latest/cc_packages.html
https://coffea-casa.readthedocs.io/en/latest/cc_packages.html

CHAPTER

SIX

COFFEA-CASA SETUP WITHOUT DASK LABEXTENTION

6.1 Preparations

Please shut down UNL HTCondor Cluster (powered by Dask Labextention and available by default), by pushing the
button labeled Shutdown:

6.2 Instantiating Your Own CoffeaCasaCluster

The next snippet will set up a cluster by instantiating a Dask Client with CoffeaCasaCluster, scaled to use 10 jobs:

from distributed import Client
from coffea_casa import CoffeaCasaCluster

cluster = CoffeaCasaCluster()
cluster.scale(10)
client = Client(cluster)

You can use an adaptive mechanism for Dask job autoscaling. This will scale Dask workers automatically based on
scheduler activity:

from distributed import Client
from coffea_casa import CoffeaCasaCluster

cluster = CoffeaCasaCluster()
cluster.adapt(minimum=4, maximum=10)
client = Client(cluster)

Note: Don’t forget to shutdown your Coffea-casa cluster before starting a new one:

cluster.close()

31

coffea-casa, Release 2023.11.16+39.g015f705

6.3 CoffeaCasaCluster

The default CoffeaCasaCluster constructor settings:

{
'protocol': 'tls://',
'security': Security(require_encryption=True,

tls_ca_file='/etc/cmsaf-secrets/ca.pem',
tls_client_cert='/etc/cmsaf-secrets/hostcert.pem',
tls_client_key='/etc/cmsaf-secrets/hostcert.pem',
tls_scheduler_cert='/etc/cmsaf-secrets/hostcert.pem',
tls_scheduler_key='/etc/cmsaf-secrets/hostcert.pem',
tls_worker_cert='/etc/cmsaf-secrets/hostcert.pem',
tls_worker_key='/etc/cmsaf-secrets/hostcert.pem'),

'log_directory': 'logs',
'silence_logs': 'DEBUG',
'scheduler_options': {'port': 8786,
'dashboard_address': '8787',
'protocol': 'tls',
'external_address': 'tls://oksana-2eshadura-40cern-2ech.dask.coffea.casa:8786'},
'job_extra': {'universe': 'docker',

'docker_image': 'coffeateam/coffea-casa-analysis:0.2.23',
'container_service_names': 'dask',
'dask_container_port': 8786,
'transfer_input_files': '/etc/cmsaf-secrets/ca.pem, /etc/cmsaf-secrets/

→˓hostcert.pem, /etc/cmsaf-secrets/xcache_token',
'encrypt_input_files': '/etc/cmsaf-secrets/ca.pem, /etc/cmsaf-secrets/

→˓hostcert.pem, /etc/cmsaf-secrets/xcache_token',
'transfer_output_files': '',
'when_to_transfer_output': 'ON_EXIT',
'should_transfer_files': 'YES',
'Stream_Output': 'False',
'Stream_Error': 'False',
'+DaskSchedulerAddress': '"tls://oksana-2eshadura-40cern-2ech.dask.coffea.

→˓casa:8786"'}}

which you can easily adjust just passing appropriate arguments to CoffeaCasaCluster constructor:

cluster = CoffeaCasaCluster(cores=1, memory="10 GiB")

or

cluster = CoffeaCasaCluster(job_extra = {'docker_image': 'coffeateam/coffea-casa-
→˓analysis:latest')

Note: Coffea-casa is using communication through the TLS protocol. You will not be able to disable TLS!

To learn how to use Dask Labextention, please check How to Configure Dask Labextension Cluster.

32 Chapter 6. Coffea-Casa Setup Without Dask Labextention

CHAPTER

SEVEN

HOW TO CONFIGURE DASK LABEXTENSION CLUSTER

The Dask JupyterLab extension package provides a JupyterLab extension to manage Dask clusters, as well as to embed
Dask’s dashboard plots directly into JupyterLab panes.

The ~/.config/dask/jobqueue-coffea-casa.yaml or /etc/dask/jobqueue-coffea-casa.yaml files are
usually the default configuration files used for CoffeaCasaCluster:

Example of a file:

jobqueue:
coffea-casa:

Dask worker options, taken from https://github.com/dask/dask-jobqueue/tree/master/
→˓dask_jobqueue
cores: 4 # Total number of cores per job
memory: "6 GiB" # Total amount of memory per job
processes: null # Number of Python processes per jobs
worker-image: "coffeateam/coffea-casa-analysis:0.xx.xx"

Comunication settings
interface: null # Network interface to use like eth0 or ib0
death-timeout: 60 # Number of seconds to wait if a worker can not find a␣

→˓scheduler
local-directory: null # Location of fast local storage like /scratch or $TMPDIR
extra: []

HTCondor Resource Manager options
disk: "5 GiB" # Amount of disk per worker job
env-extra: []
job-extra: {} # Extra submit attributes
log-directory: null
shebang: "#!/usr/bin/env condor_submit -spool"

Scheduler options
scheduler-options: {}
name: dask-worker

To configure a cluster that is launched using it, you should adjust the Dask configuration file, typically stored at ~/.
config/dask/labextension.yaml or /etc/dask/labextension.yaml.

labextension:
factory:
module: 'coffea_casa'

(continues on next page)

33

coffea-casa, Release 2023.11.16+39.g015f705

(continued from previous page)

class: 'CoffeaCasaCluster'
args: []
kwargs: {}

default:
workers: 1
adapt:
minimum: 5
maximum: 10

Users can edit kwargs: {} to change a CoffeaCasaCluster constructor directly (see more details in Coffea-Casa
Setup Without Dask Labextention).

To get an address of scheduler that will be used during client connection, try right-clicking on the cluster in the sidebar:

And then pressing Inject Dask Client Connection Code, as is shown in example below:

from dask.distributed import Client
client = Client("tls://oksana-2eshadura-40cern-2ech.dask.coffea.casa:8786")
client

or, more simply:

from dask.distributed import Client
client = Client("tls://localhost:8786")
client

34 Chapter 7. How to Configure Dask Labextension Cluster

CHAPTER

EIGHT

DEPLOYMENT OF COFFEA-CASA ANALYSIS FACILITY AT YOUR
TIER 2/TIER 3 GRID SITE OR CLUSTER

35

coffea-casa, Release 2023.11.16+39.g015f705

36 Chapter 8. Deployment of Coffea-casa Analysis Facility at your Tier 2/Tier 3 grid site or Cluster

CHAPTER

NINE

COFFEA_CASA MODULE API

class coffea_casa.CoffeaCasaCluster(*, security=None, worker_image=None, scheduler_options=None,
scheduler_port=8786, dashboard_port=8787, nanny_port=8001,
**job_kwargs)

This is a subclass expanding settings for launch Dask via HTCondorCluster over HTCondor in US.CMS facility.

classmethod security()

Return the Dask Security object used by CoffeaCasa.

37

coffea-casa, Release 2023.11.16+39.g015f705

38 Chapter 9. coffea_casa module API

CHAPTER

TEN

COMMUNITY SUPPORT AND HELP

Coffea-casa is deployed at CMS Nebraska Tier 2 grid site and developed by a group of developers from University
of Nebraska-Lincoln, University of Nebraska Holland Computing Center, University of Wisconsin-Madison and Mor-
gridge Institute.

We gratefully acknowledge the National Science Foundation which supported this work through NSF grant #1836650.

10.1 Discussion

Conversation happens in the following places:

1. Bug reports and feature requests are managed through GitHub issues

2. Ask questions: You can ask questions by sending email to e-group, adding a GitHub issue, or contacting us in
IRIS-HEP Slack channel (#coffea-casa).

Important: Coffea-casa at Nebraska technical support through GitHub Discussions.

10.2 Tech Support

Here is the link to tech support.

39

https://github.com/CoffeaTeam/coffea-casa/issues
mailto:coffea-casa-dev@cern.ch
https://github.com/CoffeaTeam/coffea-casa/discussions/categories/unl-tech-support
https://github.com/CoffeaTeam/coffea-casa/discussions/categories/unl-tech-support

coffea-casa, Release 2023.11.16+39.g015f705

40 Chapter 10. Community Support and Help

INDEX

C
CoffeaCasaCluster (class in coffea_casa), 37

S
security() (coffea_casa.CoffeaCasaCluster class

method), 37

41

	First Steps at Coffea-Casa @ UNL
	Prerequisites
	Access
	Opendata CILogon Authentication Instance
	CMS AuthZ Authentication Instance
	ATLAS AuthZ Authentication Instance

	Docker Image Selection
	Cluster Resources in Coffea-Casa Analysis Facility @ T2 Nebraska
	Opening a New Console or File
	Using Git
	Using XCache
	ServiceX
	Opendata Example
	CMS Example
	ATLAS Examples

	Installing Custom Packages on Coffea-Casa
	Installations on the Scheduler
	Installations on the Workers
	Sending Files to Workers (Without Pip)

	Performance Metrics on Coffea-Casa
	Available Features
	Coffea Metrics
	Dask Interactive Dashboard
	Dask Performance Report
	Suggestions for Improving Performance

	Interfacing With HTCondor Workers
	Locating Workers
	Accessing Workers
	Killing Workers

	Troubleshooting Common Issues
	Accessibility Issues
	Runtime Issues

	Coffea-Casa Setup Without Dask Labextention
	Preparations
	Instantiating Your Own CoffeaCasaCluster
	CoffeaCasaCluster

	How to Configure Dask Labextension Cluster
	Deployment of Coffea-casa Analysis Facility at your Tier 2/Tier 3 grid site or Cluster
	coffea_casa module API
	Community Support and Help
	Discussion
	Tech Support

	Index

